- idempotent operator
- мат.идемпотентный оператор
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Idempotent — Idempotenz ist ein Begriff aus der Mathematik und Informatik. Er bezeichnet die Eigenschaft einer Funktion, in Verknüpfung mit sich selbst das gleiche Ergebnis zu liefern wie bei einmaliger Verwendung. Die beiden grundlegenden und wichtigsten… … Deutsch Wikipedia
Closure operator — In mathematics, a closure operator on a set S is a function cl: P(S) → P(S) from the power set of S to itself which satisfies the following conditions for all sets X,Y ⊆ S. X ⊆ cl(X) (cl is extensive) X ⊆ Y implies cl(X) ⊆ cl(Y) (cl… … Wikipedia
Preclosure operator — In topology, a preclosure operator, or Čech closure operator is a map between subsets of a set, similar to a topological closure operator, except that it is not required to be idempotent. That is, a preclosure operator obeys only three of the… … Wikipedia
Dimensional operator — In mathematics, specifically set theory, a dimensional operator on a set E is a function from the subsets of E to the subsets of E. Definition If the power set of E is denoted P(E) then a dimensional operator on E is a map that satisfies the… … Wikipedia
Projection (mathematics) — Commutativity of this diagram is the universality of projection π, for any map f and set X. Generally speaking, in mathematics, a projection is a mapping of a set (or of a mathematical structure) which is idempotent, which means that a projection … Wikipedia
List of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… … Wikipedia
Outline of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… … Wikipedia
Idempotence — IPAEng|ˌaɪdɨmˈpoʊtəns describes the property of operations in mathematics and computer science which means that multiple applications of the operation does not change the result. The concept of idempotence arises in a number of places in abstract … Wikipedia
Semigroup — This article is about the algebraic structure. For applications to differential equations, see C0 semigroup. In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup… … Wikipedia
Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia
Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia